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Abstract An algorithm for massively parallel computers

is developed for energy calculations of second-order

Møller–Plesset (MP2) perturbation theory with numerical

quadratures. Message Passing Interface (MPI) and Open

Multi-Processing (OpenMP) technologies are utilized for

inter-node and intra-node parallelization, respectively.

Computational tasks and intermediates are distributed

across nodes by dividing quadrature points, and the dis-

tributed data are stored in memory. Benchmark calcula-

tions were performed on 256–8,192 CPU cores, and we

observed the speed-ups 4,534–6,266 for 8,192 cores.

A large calculation for fullerene (C60) with aug-cc-pCVTZ

(3,540 basis functions) was completed in ca. 4.8 h on 8,192

cores without invoking molecular symmetry.

Keywords Second-order Møller–Plesset perturbation

theory � MPI/OpenMP hybrid parallelization �
Numerical quadratures

1 Introduction

Second-order Møller–Plesset (MP2) perturbation theory is

the simplest ab initio correlation method [1]. Despite the

moderate computational cost, which scales as the fifth

power of the number of basis functions, more than 80% of

the correlation effect is accounted for in the MP2 correla-

tion energies. Various parallel algorithms have been

proposed for canonical MP2 [2–9], density fitting (or Res-

olution of Identity, RI) MP2 [10–12], local MP2 [13, 14],

Laplace-transformed MP2 [15, 16], pseudospectral MP2

[17], and explicitly correlated MP2 [18] methods. Most of

those algorithms use single variable distributions of atomic

orbitals (AOs), molecular orbitals (MOs), or auxiliary basis

functions. Network communication increases with the

number of processes in the AO-based parallelization, while

repeated evaluations or broadcasts of AO integrals are

necessary in the MO-based algorithm. Baker and Pulay [7]

developed a disk-based two-step parallelization scheme,

where AO and MO indices are distributed for the first and

second half transformations, respectively. The total amount

of network communication is independent of the number of

processes, and AO integrals are calculated only once.

The number of central processing unit (CPU) cores per

node continues to increase because of the power and heat

problems. The latest high-performance supercomputers

consist of more than 10,000 nodes and 100,000 CPU cores.

It is necessary to develop a highly efficient parallelization

scheme for distributing computational tasks and data in

order to make the best use of such architectures. One

approach for the data distribution is the shared-memory

programming model for distributed-memory computers

such as global arrays (GA) [19] and distributed data

interface (DDI) [20], in which global memory is accessed

without explicit cooperation by other processes. Another
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approach is the combined use of Message Passing Interface

(MPI) and Open Multi-Processing (OpenMP) for inter-

node and intra-node parallelization, respectively. Because

OpenMP allows CPU cores to share data within a node,

larger arrays per process are available compared with the

flat MPI parallelization. Furthermore, computational tasks

can be efficiently distributed to nodes and cores using

different indices for MPI and OpenMP.

In this paper, an MPI/OpenMP hybrid parallel algorithm

for large-scale MP2 energy calculations is presented. Two-

electron MO integrals are evaluated using a numerical

quadrature technique and two-step distribution of quadra-

ture points and virtual MOs is introduced. A huge amount

of data are distributed across nodes and stored in their

memory.

2 Theory and algorithm

The closed-shell MP2 energy can be written as

EMP2 ¼
Xocc

ij

Xvirt

ab

aijbjð Þ 2 aijbjð Þ � ajjbið Þf g
ei � ej � ea � eb

; ð1Þ

where i and j are doubly occupied MOs, a and b are virtual

MOs, and e are the corresponding orbital energies. In the

present implementation, we calculate two-electron MO

integrals using numerical quadratures [21, 22], which have

been utilized for three- and four-electron integrals in MP2-

F12 calculations. The two-electron integrals are expanded

into products of 2- and 3-index objects as,

aijbjð Þ ¼ ab r�1
12 ijj
��� �

¼
X

g

/a rg

� �
/i rg

� �
b r�1

1g jj
���

D E
; ð2Þ

where /i rg

� �
is an MO amplitude at the quadrature point,

rg, and /a rg

� �
denotes a weighted MO amplitude. The

latter is obtained by

/a rg

� �
¼ x rg

� �
/a rg

� �

¼ x rg

� �X

l

Clavl rg

� � ð3Þ

where x(r) is a weight function, vl rð Þ are AOs, and Cla

are MO coefficients. bjr�1
1g jj

D E
are the following three-

center electric field integrals,

bjr�1
1g jj

D E
¼
Z

dr1/b r1ð Þ/j r1ð Þ r1 � rg

�� ���1

¼
X

lm

ClbCmj

Z
dr1vl r1ð Þvm r1ð Þ r1 � rg

�� ���1
: ð4Þ

The numbers of the MO amplitudes and three-center

integrals scale as (O?V)G and OVG, respectively, where

O, V, and G are the numbers of occupied MOs, virtual

MOs, and quadrature points, respectively. By the use of

numerical quadratures, the scaling of intermediates is

reduced from quartic to cubic. Moreover, the

parallelization scheme is simplified since there is no need

to transform the indices of quadrature points. Various

numerical integration schemes have been developed in

density functional theory. We use the Voronoi polyhedra

[23] for spatial partitioning. Euler–Maclaurin and Gauss–

Legendre schemes [24] are used for radial and angular

(h and /) grid quadratures, respectively, in this particular

work.

Figure 1 shows a schematic representation of our MPI/

OpenMP parallel algorithm for MP2 energy calculations

using numerical quadratures. The algorithm consists of 5

steps: (1) Grid data generation, (2) MO amplitude calcu-

lation, (3) Three-center integral calculation, (4) MO

amplitude communication, and (5) Three-center integral

communication and calculations of two-electron integrals

and MP2 energy.

In Steps from 1 to 3, quadrature points are distributed,

while virtual MO pairs are distributed in Step 5. In Steps 2

and 3, MO amplitudes and three-center integrals are cal-

culated and stored for the grid points distributed to each

process. The MO amplitudes are gathered to the master

process and then broadcasted in Step 4. The three-center

integrals for all occupied MOs, quadrature points, and

single virtual MO are gathered to appropriate processes in

Step 5. The communication cost is O((O?V)Glog2Nproc)

and O(OVG) for MO amplitudes and three-center integrals,

respectively, where Nproc is the number of processes. The

amount of communication is reduced from the fourth

power of the numbers of basis functions and MOs in

conventional four-index transformation schemes. To sim-

plify the communication, MPI calls are outside the Open-

MP regions. By switching the index of the MPI

parallelization from g in Steps 1 to 3 to ab pairs in Step 5,

repeated calculations of objects are avoided. When the

numbers of quadrature points and virtual MO pairs are

much larger than the number of processes, computational

tasks and data are almost equally distributed. The compu-

tational cost for two-electron integrals is O(O2V2G). This

method is advantageous compared with the O(ON4) first

integral transformation of the conventional method when a

large basis set, roughly N2 [ OG, is used.

OpenMP parallelization is introduced for the distribu-

tions of the quadrature points in Step 1, AO indices in Steps

2 and 3, and occupied MO pair indices in Step 5.

By sharing two- and three-dimensional arrays with all CPU

cores in a node, a large amount of data can be stored in

memory.

In the RI-MP2 method, two-electron integrals are eval-

uated by a sum of products of 2-index and 3-index objects
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including auxiliary basis functions. This approach makes it

possible to obtain accurate energies at reasonable compu-

tational costs. Parallel algorithms [10–12] include the

network communication for at most 3-index objects, and

they will be also suitable for parallel computing. The

parallel implementation of the pseudospectral method [25]

resembles the present algorithm. The weighted MO

amplitudes in Eq. 2 are replaced by least-square fitting

operators in this case.

3 Results and discussion

The algorithm was implemented into the quantum chemistry

program package GELLAN [26]. Benchmark calculations

with up to 8,192 CPU cores were performed using the

facilities of the Supercomputer Center, Institute for Solid

State Physics, University of Tokyo. The computer system

is SGI Altix ICE 8400EX (CPU: Intel Xeon X5570 2.93GH,

8 CPU cores/node, Memory: 24 GB/node, Network:

Enhanced Hypercube with 4x QDR InfiniBand) with Intel

Fortran Compiler version 11.1 and Intel Math Kernel Library

version 10.2. Eight threads per process are generated in the

MPI/OpenMP hybrid parallel calculations.

We have tested the present numerical MP2 algorithm for

anthracene (C14H10), tetracene (C18H12), and coronene

(C24H12) molecules using the medium, fine, and ultrafine

grids in [22], the numbers of points in which are 9,216,

24,576, and 51,200, respectively. The geometrical param-

eters are optimized at B3LYP [27, 28]/6-31G(d) [29, 30],

all electrons are correlated, and molecular symmetries are

not utilized for electron correlation in this particular work.

We use the aug-cc-pCVTZ basis set for coronene, aug-cc-

pCVQZ for tetracene, and aug-cc-pCV5Z for anthracene

[31–33]. Linearly-dependent vectors are removed from

basis set with the threshold 10-6 for eigenvalues of the

overlap matrix. The conventional MP2 energies are

obtained using the GAMESS program [34]. The system

sizes, SCF, and MP2 energies are summarized in Table 1.

The largest error of the medium grid is 1.7 mEh for cor-

onene, while the ultrafine grid leads to correlation energies

accurate to a few 10 lEh. The use of the Lebedev quad-

rature [35] and partitioning an atom into layers for angular

grid [36], which are not employed in this work, will

increase the efficiency. Furthermore, the error of numerical

integration can be reduced by ca. one order of magnitude

by renormalizing orbital amplitudes with respect to the

overlap metric (Ten-no S, unpublished).

The elapsed times and speed-ups relative to the 256

CPU core time are shown in Table 2. The speed-ups are

almost linear up to 2,048 cores and the parallel efficiency

retained even at the maximum 8,192 cores. In addition, the

calculation for fullerene (C60) with aug-cc-pCVTZ (3,540

basis functions, 180 occupied MOs) was completed in only

17,179 s (4.8 h) on 8,192 cores with the total amount of the

three-center integrals ca. 1.9 TB. By distributing large data

across nodes, MP2 calculations for such large molecules

become feasible in spite of the limited amount of memory

per node.

The elapsed times and speed-ups for computational

steps are summarized in Table 3. The speed-ups for all

steps are roughly linear up to 8,192 cores, indicating that

the computational tasks are almost evenly distributed

among the processes. The most time-consuming step is

O(O2V2G) for the calculation of two-electron integrals

using MO amplitudes and three-center integrals.

Table 4 shows the communication times for MO

amplitudes and three-center integrals. The duration for MO

Step 1: Loop over g (MPI and OpenMP parallelization) 

        Calculate coordinates and weights for grid points 

      End of g loop 

      Broadcast the number of the grid points of each process 

Step 2: Loop over μ (OpenMP parallelization) 

        Loop over g (MPI parallelization) 

           Calculate ( )gμφ r

        End of g loop 

        Transform to ( )p gφ r

      End of μ loop 

Step 3: Loop over g (MPI parallelization) 

        Loop over μ (OpenMP parallelization) 

          Loop over ν

            Calculate 1
1grμ ν−

          End of ν loop 

      End of μ loop  

        Transform to 1
1gb r j−

      End of g loop 

Step 4: Gather partial ( )p gφ r  to master process 

      Broadcast ( )p gφ r  to all processes 

Step 5: Loop over b (MPI parallelization) 

        Send and receive 1
1gb r j−  for all j and g, and single b

        Loop over a (MPI parallelization) 

          Loop over ij-batch (OpenMP parallelization) 

            Calculate ( )ai bj

          End of ij loop 

          Calculate partial MP2 energy 

        End of a loop 

      End of b loop 

      Accumulate MP2 energy to master process 

Fig. 1 Outline of MPI/OpenMP hybrid parallel algorithm for MP2

energy calculation
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amplitudes increases logarithmically with the number of

cores, owing to the broadcast in this step. On the other

hand, the time for three-center integrals decreases up to

2,048 or 4,096 cores because the size of the communicated

data per process is reduced with the number of processes.

The communication time on 8,192 cores, however,

increases from that on 4,096 cores, especially for anthra-

cene that has the largest number of virtual MOs. The net-

work latency increases with the number of MPI

communications, which is proportional to the numbers of

virtual MOs and processes. Thus, the latency becomes the

bottleneck in communicating three-center integrals for a

large number of processes.

The communication time makes up 22–43% of the total

MP2 time on 8,192 cores. The ratio of the communication

to the computation will decrease with the sizes of mole-

cules and basis sets, since the communications are of

O((O?V)Glog2Nproc) and O(OVG) for MO amplitudes and

three-center integrals, respectively, while the computa-

tional cost scales as O(O2V2G). High parallel efficiency can

Table 1 System sizes, SCF, and MP2 energies with different grids (Eh)

Occupied

MOs

Basis

functions

SCF MP2

Medium Fine Ultrafine Exact

Anthracene 47 3,334 -536.200 418 -3.142 972 -3.143 208 -3.143 289

Tetracene 60 2,514 -688.889 241 -3.957 214 (0.000 399) -3.957 518 (0.000 095) -3.957 641 (-0.000 028) -3.957 613

Coronene 78 1,692 -916.227 106 -4.941 021 (0.001 704) -4.942 623 (0.000 102) -4.942 747 (-0.000 022) -4.942 725

Deviations from the exact energies are given in parentheses

Table 2 Elapsed times for MP2 calculations (seconds)

Molecule Number of CPU cores

256 1,024 2,048 4,096 8,192

Anthracene 15,180.0 (256.0) 3,869.3 (1,004.3) 1,977.3 (1,965.3) 1,095.9 (3,545.9) 857.2 (4,533.7)

Tetracene 15,133.8 (256.0) 3,845.7 (1,007.4) 1,973.6 (1,963.1) 1,063.1 (3,644.2) 656.7 (5,900.0)

Coronene 14,212.9 (256.0) 3,601.8 (1,010.2) 1,850.4 (1,966.3) 975.6 (3,729.6) 580.7 (6,266.1)

Speed-ups relative to the 256 CPU core time are given in parentheses

Table 3 Elapsed times for computational steps (seconds)

Number of CPU cores 256 1,024 2,048 4,096 8,192

Anthracene

MO amplitude 42.70 (256.0) 18.46 (592.2) 5.48 (1,993.4) 2.84 (3,846.5) 1.68 (6,518.6)

Three-center integral 1,507.43 (256.0) 382.14 (1,009.8) 191.38 (2,016.5) 99.83 (3,865.7) 53.17 (7,257.7)

Two-electron integral 13,468.00 (256.0) 3,369.00 (1,023.4) 1,669.69 (2,064.9) 844.08 (4,084.7) 427.88 (8,057.8)

MP2 energy 3.36 (256.0) 0.84 (1,020.1) 0.42 (2,037.7) 0.21 (4,018.2) 0.10 (8,774.5)

Tetracene

MO amplitude 23.44 (256.0) 5.88 (1,020.5) 3.00 (2,001.9) 1.61 (3,739.4) 0.81 (7,437.0)

Three-center integral 1,061.55 (256.0) 269.65 (1,007.8) 138.06 (1,968.4) 73.34 (3,705.3) 38.45 (7,068.4)

Two-electron integral 13,899.99 (256.0) 3,477.44 (1,023.3) 1,754.19 (2,028.5) 859.29 (4,141.1) 445.21 (7,992.7)

MP2 energy 2.85 (256.0) 0.72 (1,016.2) 0.36 (2,029.5) 0.18 (4,059.0) 0.09 (8,398.0)

Coronene

MO amplitude 13.62 (256.0) 3.41 (1,021.4) 1.79 (1,952.9) 0.90 (3,877.6) 0.44 (7,995.3)

Three-center integral 592.22 (256.0) 152.31 (995.4) 75.76 (2,001.3) 41.11 (3,688.3) 21.84 (6,941.1)

Two-electron integral 13,392.32 (256.0) 3,340.35 (1,026.4) 1,671.24 (2,051.4) 844.31 (4,060.6) 430.62 (7,961.6)

MP2 energy 2.39 (256.0) 0.60 (1,016.3) 0.30 (2,032.7) 0.15 (4,190.7) 0.07 (8,268.1)

Speed-ups relative to the 256 CPU core time are given in parentheses
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thus be attained for large systems even with more than

10,000 CPU cores.

4 Conclusions

We have developed an MPI/OpenMP hybrid parallel

algorithm for MP2 calculations using numerical quadra-

ture. The scaling of intermediates is reduced from quartic

to cubic, and the distributions of the computational task

and data are simplified by utilizing numerical quadratures.

High parallel efficiency is attained by distributing

quadrature points and virtual MO pairs. The speed-up for

the computation is nearly linear, while the communication

time increases because of the broadcast and the network

latency when thousands of cores are used. However, the

parallel performance of the present scheme will remain

high for large systems even with more than 10,000 CPU

cores, since the ratio of the computation to the communi-

cation increases with the system size.

The parallel scheme using numerical quadratures can be

applied to higher-order correlated methods. The imple-

mentation for explicitly correlated methods is also in

progress.
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